Autoencoders An Introduction

Author:	Paul O'Leary and Anika Terbuch
Date:	6 Jule 2022
Document Number:	CoA2020-MLSS
Conference:	Summer School Presentation

Chair of Automation

Department Product Engineering, University of Leoben Peter Tunner Straße 27, 8700 Leoben, Austria

phone:	+43/(0)3842/402-5301
fax:	+43/(0)3842/402-5302
email:	automation@unileoben.ac.at
web:	automation.unileoben.ac.at

Context

- 1. The primary focus in this presentation is on time-series analysis.
- 2. Application to real-time machine data that for multi-variate timeseries (MVTS).
- 3. Autoencoders will be considered as a means of identifying relevant information in data and with this to enable dimensionality reduction.
- 4. Autoencoders can be trained in an unsupervised manner, this alleviates the need for labelled data.
- 5. Final goal is hybrid-learning, i.e., combining: a) a-priori knowledge, b) analytical techniques and c) machine learning.

Elements of an Autoencoder

Autoencoder structure

Single layer model

$$egin{aligned} oldsymbol{s} &= f(oldsymbol{W}_e \,oldsymbol{y} + oldsymbol{b}_e) &\in \mathbb{R}^n \ oldsymbol{\hat{y}} &= g(oldsymbol{W}_d \,oldsymbol{y} + oldsymbol{b}_d) &\in \mathbb{R}^m \end{aligned}$$

Both f(x) and g(x) are activation functions, e.g.

Note both these activation functions have significant regions which are linear

With the ReUL activation we have

With the ReUL we always have a piece wise function of linear operations on y.

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

First definition in a learning context:

" Learning Internal Representations by Error Propagation" by: Rumelhart, **Hinton** and Williams, 1965.

		T.	ABL	E 5			Input Patterns		Hidden Unit Patterns		Output Patterns
Input		Hidden Unit				Output	00 + 00 00 + 01	•	111 110	-	000
raticrus			uters				00 + 10	••	011	•	010
							00 + 11	-+	010	-+	011
10000000	•	.5	0	0	•	1000000	01 + 00	-	110	-•	001
01000000	-+	0	1	0	-	01000000	01 + 01	-•	010	-	010
00100000		•	-	à		00100000	01 + 10	-*	010	-•	011
00100000	-•	-	1	U	-	0010000	01 + 11	-•	000	-•	100
00010000	-	1	1	1	-+	00010000	10 + 00	-•	011		010
00001000	-	0	1	1	-+	00001000	10 + 01	٠	010	•	011
00000100			-	-		0000000	10 + 10	-•	001	-	100
00000100	-•	.3	0	1	-	00000100	10 + 11	•	000		101
00000010	-	1	0	.5	-+	00000010	11 + 00	-	010	-	011
00000001	-+	0	0	.5	-+	00000001	11 + 01	-	000	-	100
		-	•				11 + 10	-•	000	-•	101
						······································	11 + 11	-•	000	-•	110

@incollection{rumelhart:errorpropnonote, address = {Cambridge, MA}, author = {Rumelhart, David E. and Hinton, Geoffrey E. and Williams, Ronald J.}, booktitle = {Parallel Distributed Processing: Explorations in the Microstructure of Cognition, {V}olume 1: {F}oundations}, editor = {Rumelhart, David E. and Mcclelland, James L.}, pages = {318--362}, year = 1985, publisher = {MIT Press}, title = {Learning Internal Representations by Error Propagation},

Elements of an Autoencoder

Autoencoder structure (mappings)

Composite map

$$\hat{\boldsymbol{y}} = G(F(\boldsymbol{y}, \boldsymbol{\alpha}), \boldsymbol{\beta})$$

The goal

The goal is to generate a reproduction \hat{y} of the input y that achieves a high degree of dimensionality reduction, i.e., n < m; while, maintaining the *significant information* from the input data.

Expressing the goal as a cost function

$$E(\boldsymbol{\alpha},\boldsymbol{\beta}) = \|\boldsymbol{r}\|_2 + \lambda R(\boldsymbol{s}, N(0, 1))$$

The Concept of Low Rank Identity

Can the identity matrix I be factored?

Of course, since B^{-1} B = I. With special case $A^T A = I$.

TABLE 5

Do low rank factorizations exist? Yes, if we can accept some finite error E.

loput Patterns		Hido Pa	ittern		Output Patterns		
10000000	•	.5	0	0	+	10000000	
01000000	-•	0	1	0	-	01000000	
00100000	-•	1	1	0	-•	00100000	
00010000	•	1	1	1	-•	00010000	
00001000	-	0	1	1	-+	00001000	
00000100	-•	.5	0	1	-	00000100	
00000010	-+	1	0	.5	-+	00000010	
00000001	-+	Õ	Ō	.5	-•	00000001	

The most efficient low rank approximations are Sylvester equations of the form:

AX + XB = C

Example Low Ran Approximation to Identity

Rank 10 deficint with $\in \approx 2.2e - 9$

Low Rank Approximations are Nonunique

Original

Original

Structure (information) of the error is important, no only the magnitude.

Discrete bases functions can be used to define structure. Both reconstructions are rank 10 deficient

Random bases

Low rank approx (2)

Polynomial bases

Analogy: Analysis and Synthesis Functions

Fourier analysis in the context of autoencoders

Fourier filtering using truncation (Dimensionality reduction)

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

Low Rank Approximations with Bases

Raw data

Magnitude 0.0

Discrete orthogonal polynomials

Low rank approximations

Harmonic nr

Model differences

7/6/2022 Paul.oleary@unileoben.ac.at

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

New Proposed Architecture

Error prorogation

$$\boldsymbol{y}_m = \boldsymbol{B}_c \, \boldsymbol{\alpha}, \qquad (20)$$

If Λ_{α} is the covariance of α (Variance of the latent space as approximation), then,

$$\boldsymbol{\Lambda}_{\boldsymbol{y}_m} = \boldsymbol{B}_c \, \boldsymbol{\Lambda}_{\boldsymbol{\alpha}} \, \boldsymbol{B}_c^{\mathrm{T}}. \tag{21}$$

Polynomials

Discrete Orthogonal Polynomials

Constrained Discrete Orthogonal Polynomials

Example 2

