Autoencoders An Introduction

Chair of Automation

Department Product Engineering, University of Leoben Peter Tunner Straße 27, 8700 Leoben, Austria

Context

- 1. The primary focus in this presentation is on time-series analysis.
- 2. Application to real-time machine data that for multi-variate timeseries (MVTS).
- 3. Autoencoders will be considered as a means of identifying relevant information in data and with this to enable dimensionality reduction.
- 4. Autoencoders can be trained in an unsupervised manner, this alleviates the need for labelled data.
- 5. Final goal is hybrid-learning, i.e., combining: a) a-priori knowledge, b) analytical techniques and c) machine learning.

Elements of an Autoencoder

Autoencoder structure

Single layer model

$$
s = f(\boldsymbol{W}_e \boldsymbol{y} + \boldsymbol{b}_e) \in \mathbb{R}^n
$$

$$
\hat{\boldsymbol{y}} = g(\boldsymbol{W}_d \boldsymbol{y} + \boldsymbol{b}_d) \in \mathbb{R}^m
$$

Both $f(x)$ and $g(x)$ are activation functions, e.g.

Note both these activation functions have significant regions which are linear

With the ReUL activation we have

With the ReUL we always have a piece wise function of linear operations on y.

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

First definition in a learning context:

", Learning Internal Representations by Error Propagation" by: Rumelhart, Hinton and Williams, 1965. TABLE 8

@incollection{rumelhart:errorpropnonote, address = {Cambridge, MA}, author = {Rumelhart, David E. and Hinton, Geoffrey E. and Williams, Ronald J.}, booktitle = {Parallel Distributed Processing: Explorations in the Microstructure of Cognition, {V}olume 1: {F}oundations}, editor = {Rumelhart, David E. and Mcclelland, James L.}, pages = {318--362}, year = 1985, publisher = {MIT Press}, title = {Learning Internal Representations by Error Propagation},}

Elements of an Autoencoder

Autoencoder structure (mappings)

Composite map

$$
\hat{\pmb{y}} = G(F(\pmb{y},\pmb{\alpha}),\pmb{\beta})
$$

The goal

The goal is to generate a reproduction \hat{y} of the input y that achieves a high degree of dimensionality reduction, i.e., $n < m$; while, maintaining the *significant information* from the input data.

Expressing the goal as a cost function

$$
E(\boldsymbol{\alpha},\boldsymbol{\beta})=\|\boldsymbol{r}\|_2+\lambda R(\boldsymbol{s},N(0,1))
$$

The Concept of Low Rank Identity

Can the identity matrix I be factored?

Of course, since B^{-1} B = I. With special case $A^{T} A = I$.

TABLE 5

Do low rank factorizations exist? Yes, if we can accept some finite error Є.

The most efficient low rank approximations are Sylvester equations of the form:

 $AX+XB=C$

Example Low Ran Approximation to Identity

Rank 10 deficint with $\epsilon \approx 2.2e - 9$

Low Rank Approximations are Nonunique

Original

Original

Structure (information) of the error is important, no only the magnitude.

Discrete bases functions can be used to define structure.

Both reconstructions are rank 10 deficient
 $\frac{\text{Low rank } 10}{\text{Low rank } \text{approx } (1)}$

Random bases

Polynomial bases

Analogy: Analysis and Synthesis Functions

Fourier analysis in the context of autoencoders

Fourier filtering using truncation (Dimensionality reduction)

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

11

Low Rank Approximations with Bases

Raw data

Discrete orthogonal polynomials Fourier bases (DFT)

Low rank approximations

Spectrum wrt Bases

Model differences

 0.9

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

 $0₁$

02

 $0₄$

 0.5

Time

 06

Paul.oleary@unileoben.ac.at 7/6/2022

New Proposed Architecture

$$
\mathbf{y}_m = \boldsymbol{B}_c \, \boldsymbol{\alpha},\tag{20}
$$

If Λ_{α} is the covariance of α (Variance of the latent space as approximation), then,

$$
\Lambda_{\mathbf{y}_m} = \boldsymbol{B}_c \, \boldsymbol{\Lambda}_{\alpha} \, \boldsymbol{B}_c^{\mathrm{T}}.
$$
 (21)

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at

Polynomials

Discrete Orthogonal Polynomials

Constrained Discrete Orthogonal Polynomials

Example 2

© 2022 Chair of Automation, University of Leoben automation.unileoben.ac.at