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Conventional
Machine Learning

* Limited in their ability to process natural data in
their raw form. We need features!

- Creating features is difficult, time-consuming,
requires expert knowledge.

Inference:
-1 prediction,
recognition
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Low-level Pre- Feature Feature
sensing processing extract. selection

Feature Leaming
Representation algorithm

E.g., SIFT, HoG, etc.
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Deep Learning
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Fig: I. Goodfellow
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History

1958 - Frank Rosenblatt creates the Perceptron.

1959 - Hubel and Wiesel elaborate cells in Visual
Cortex

1975 - Paul J. Werbos develops the
Backpropagation Algorithm
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1980 - Neocognitron, a hierarchical multilayered
ANN.

1990 - Convolutional Neural Networks




Model: Biological Neuron
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Artificial Neuron - N
Perceptron

Outputs

flnet) —— Y

Linear Activation
Combination Function

net = Z r;w; + b y = f(net)

1=1
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tion Technology

Function of the Neuron
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—-\ net = E T lls
2 W, / /Z{\ net Z — O

R b = wp with

Combination

Lo = 1

The bias is usually represented by the weight
with the index 0 and the input vector is
extended by one digit.




Perceptron Rule

* Rosenblatt's initial perceptron rule is fairly simple
and can be summarized by the following steps:

* Initialize the weights to small random numbers.
* For each training sample x:
* 1. Calculate the output value

n
net = E 4k T80,
i=0

* 2. If the perceptron made an error, update the
weights

Wnew = Wold 1 nAw

>
on
Q
o
e
i -
(W]
Tt
e
Re
-
(1+]
=
O.
—
=
=)
N—
=
O




N

Perceptron Rule

Wnew = Wold 1 nAw

Let’s learn w;’s that minimize the squared error
1

E[(I_;] = § Z(fd - ()11)2

deD

Where D is set of training examples
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Gradient Descent

* Minimize the squared error on the training
examples!

= Gradient
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= Training Rule

Aw = —nV E[w]

oFE
Aw; = —n—

dw;




Perceptron Rule

* If we made an error, update the weights

n
het = E Ty s
i=0

Wnew = Wold + nAw

Aw; = (target — output)x;




Activation functions - N
Threshold function

o Outputs PrOpertieS
— finet) —— o Not differentiable

Activation
Function
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Activation functions - N
Linear function (Identity)

Outputs Properties
ﬂuu flnet) — Y
e Differentiable

Activation
Function
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Activation functions - N
Tanh

Outputs Properties
— — Y . .
finet) e Differentiable
e Saturation effects
Activation . ] .
Function e Computationally intensive

— tanh(x)
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Activation functions - N
Rectified Linear Unit (RelLU)

o Outputs PrOpertieS
| S\t ’ e Unrestricted
e Activity only at x>0
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K = . _ _ _ _ ‘1:‘3%%
g@ Built-in activation functions X
in Tensorflow (TF)

* see tf.keras.activations

* https://www.tensorflow.org/api_docs/pytho
n/tf/keras/activations



https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/activations
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Build a Network

* By linking simple neurons together, a
complex network is created.

* Weights determine the "total function®”.
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* Calculation can be done in parallel
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Function of the Neuron

| (4
—-\ net = E T lls
2 W, / /Z{\ net Z — O

R b = wp with

Combination

Lo = 1

The bias is usually represented by the weight
with the index 0 and the input vector is
extended by one digit.




Parallel calculation on GPU

e Nvidia Tesla A100 Ampere
-40GB RAM
— Tensor-Cores
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Feedforward Network
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input hidden layer output layer




B Weights are initialized with small random values at
8 the beginning.
>

input hidden layer output layer




Network Training

e S0 how do we learn the weights?
— Backpropagation of Error

/

input hidden layer output layer

>
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Network Training
Update of the Weights

Different optimization methods are available
see tf.keras.optimizers

e Gradient method

e Update with learning rate * Gradients
e Variable inertia term (Momentum)

e Procedure with variable learning rate
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https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/

Example: Gradient method

Function Curve Error Surface
............... =1E|U e
Weight = o/ : JC : . T

Bias = 1.03 : FL : :

Ly bk UG o o PPN, SO P P A L R e S O R oy S |

......................................................................

Error
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Network Training
Settings

e Settings
- |learning rate
— Regularization parameters

— Algorithm for the optimization of
weights
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e | ots of data and big networks:

—Training time can take several
days/weeks!




\@ Network Training
Learning Rate
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- SGD

= Momentum
== NAG

- Adagrad
Adadelta
Rmsprop

1.0
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training error
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Large Models

e Choromanska et al & LeCun 2014,
e 'The Loss Surface of Multilayer Nets’

e The low-index critical points of large models
concentrate in a band.
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Trained NN

e Neural network after training
* What has it learned?

* Which structures are important for the
NN?
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Is an analysis & interpretation possible?




Study of learned NN

e Which input is important for an object class?
— Noise at input
— Output desired object class

optimize
with prior
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Study of learned NN

e Which input data are important for e.q.
hartebeest, clownfish,...

Anemone Fish Banana Parachute Screw
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Fooling NN
Access Control

e Face recognition with NN
— Glasses ——  other person!
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Types of
Neural Networks - RNN

e Recurrent neural network (RNN)
* direct feedback (blue)
* indirect feedback (green)
* lateral feedback (red)




Types of
Neural Networks - RNN

e Recurrent neural network (RNN)
— Time series processing
— Long short-term memory (LSTM)
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e Applications
— Speech recognition (Siri, Alexa)
— Action recognition in videos

e Tensorflow Keras RNN
- https://www.tensorflow.org/guide/keras/rnn



https://www.tensorflow.org/guide/keras/rnn

E@ Speech Recognition using
Deep Learning

100% 4

Using DL

Chair for Information Technology

10%

4%

Word error rate on Switchboard

2%

1%

v

1990 2000 2010



Image Classification

e Given an image => assign a label

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

- cat
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Object Detection

e Multiple objects: The task is to classify
and localize all the objects in the image.




o
@ Detection & Segmentation

The goal of semantic image segmentation is to
label each pixel of an image with a
corresponding class of what is being
represented.

Chair for Information Technology

Object Detection Semantic Segmentation Instance Segmentation



1M hidden units

Information Technology

- Spatial correlation is local
- Better to put resources elsewhere!

'LOCALLY CONNECTED NEURAL NET

STATIONARITY? Statistics is
similar at dif ferent locations

Chair for

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

FULLY CONNECTED NEURAL NET

Example: 1000x1000 image

Networks for Images

LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

Ranzol

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters
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Learned Filters
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Layers represents different features!

Pixel => edge => texton => part => object

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier




Types of N
Neural Networks - CNN

e Convolutional Neural Network
— Local connectivity
— Special arrangement

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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CNN Example

e Convolution Demo
* https://cs231n.github.io/convolutional-networks/

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



https://cs231n.github.io/convolutional-networks/

N

Pooling Layer

The function of pooling is to reduce the size
of the feature map

=> fewer parameters in the network.

Rectified feature map

1 4 Pooled feature map
2 6 max pooling with 2x2 filters 6
and stride 2 l
0 f 4 7
1 3 1

Max(3,4,1,2)=4




Deeplearning Network N
GoogleNet

e Object recognition with 22 layers
e 1000 classes, error rate 6.7%
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Deeplearning Network
VGGNet

e Object recognition with 16 layers

e 138 million weights
e 4 GPUs ~ 3 weeks learning time




U-Net: CNN for Biomedical %
Image Segmentation

U-Net for fast and precise segmentation of images!
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@ Neural Network Toolboxes

e TensorFlow
- Open Source “F’
- from Google " TensorFlc
— Google speech recognition
— Google Photos
- Phyton, C++, Java Interface
— GPU and CPU support
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