i

MONTAN

UNIVERSITAT

WWIWNLUNILEOBEN.AC.AT

DSHL Summer School 2022
Day 2: Deep Learning

Martin Antenreiter

Conventional
Machine Learning

* Limited in their ability to process natural data in
their raw form. We need features!

- Creating features is difficult, time-consuming,
requires expert knowledge.

Inference:
-1 prediction,
recognition

==
on
o
o
=
W any
0
E_
o
o
=
©
=
O
—
e
o
Fael
©
ks
U

Low-level Pre- Feature Feature
sensing processing extract. selection

Feature Leaming
Representation algorithm

E.g., SIFT, HoG, etc.

an
—
=
™
—
(8]

Deep Learning

Output
A
Mapping
Output Output from
features
2 4 >
Mapping Mapping Most
Output from from complex
features features features
s A A A
Hand- Hand- ;
designed designed Features ?o“:tﬁ:,eef
program features
s s A A
Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning
learning

Fig: I. Goodfellow

o~

History

1958 - Frank Rosenblatt creates the Perceptron.

1959 - Hubel and Wiesel elaborate cells in Visual
Cortex

1975 - Paul J. Werbos develops the
Backpropagation Algorithm

=
on
S
o
T
ooy
a
!_
=
_D
T
o
=
o
b
=
o
Y
=
m
e,
)

1980 - Neocognitron, a hierarchical multilayered
ANN.

1990 - Convolutional Neural Networks

Model: Biological Neuron

Action potential
- +40 '
© EPSPs add
> =y up to produce
= e 0 MWreshold
e o depo\acization
e (@)} .
- =
s o)
_55 |Threshold | .
—70 == = = 5 F F 8 8 B N N B B N N | Ee-sE n-g-s-t-a-ze: =
t
EPSP EPSP
0 1 2 3 4 5
Time (ms)

Artificial Neuron - N
Perceptron

Outputs

flnet) —— Y

Linear Activation
Combination Function

net = Z r;w; + b y = f(net)

1=1

N
Perceptron
Inputs L.ai

. * X

n
net = Z Tiw; + b o P

i=1

Outputs
- flnet) ——

Linear Activation
Combination Function

y = f(net) s

A

+1

- » X-axis

-1 [Domain —» R (x-axis) }

Range —[-1, +1](y-axis)

e
pa
=
O
—

Chair fo

tion Technology

Function of the Neuron

| (4
—-\ net = E T lls
2 W, / /Z{\ net Z — O

R b = wp with

Combination

Lo = 1

The bias is usually represented by the weight
with the index 0 and the input vector is
extended by one digit.

Perceptron Rule

* Rosenblatt's initial perceptron rule is fairly simple
and can be summarized by the following steps:

* Initialize the weights to small random numbers.
* For each training sample x:
* 1. Calculate the output value

n
net = E 4k T80,
i=0

* 2. If the perceptron made an error, update the
weights

Wnew = Wold 1 nAw

>
on
Q
o
e
i -
(W]
Tt
e
Re
-
(1+]
=
O.
—
=
=)
N—
=
O

N

Perceptron Rule

Wnew = Wold 1 nAw

Let’s learn w;’s that minimize the squared error
1

E[(I_;] = § Z(fd - ()11)2

deD

Where D is set of training examples

44

e

Gradient Descent

* Minimize the squared error on the training
examples!

= Gradient
OFE OFE OF

Owoy Owy’ ow,,

VE[¥] =

==
on
o
o
o
o
J
@
'_
=
o
=
m
E
o
T
oo
O
e
m
L
U

= Training Rule

Aw = —nV E[w]

oFE
Aw; = —n—

dw;

Perceptron Rule

* If we made an error, update the weights

n
het = E Ty s
i=0

Wnew = Wold + nAw

Aw; = (target — output)x;

Activation functions - N
Threshold function

o Outputs PrOpertieS
— finet) —— o Not differentiable

Activation
Function

I
(00]
|
(@)
|
i
I
N
o
)
I
(@)
(00]

Activation functions - N
Linear function (Identity)

Outputs Properties
ﬂuu flnet) — Y
e Differentiable

Activation
Function

I
I
I
w
I
N
I
|_I
X O
=
N
w
N

Activation functions - N
Tanh

Outputs Properties
— — Y . .
finet) e Differentiable
e Saturation effects
Activation .] .
Function e Computationally intensive

— tanh(x)

en

—

-
=
"

n

tanh(x)
o
o

Activation functions - N
Rectified Linear Unit (RelLU)

o Outputs PrOpertieS
| S\t ’ e Unrestricted
e Activity only at x>0

An

—

-
"

Activation
Function
1.0
O — RelLU(x) = max(0, x)
: 0.8
E 0.6
=
o
o 04 T
0.2 1
0.0

~1.00 -0.75 -0.50 —0.25 0.00 025 050 0.75 1.00
X

K = . _ _ _ _ ‘1:‘3%%
g@ Built-in activation functions X
in Tensorflow (TF)

* see tf.keras.activations

* https://www.tensorflow.org/api_docs/pytho
n/tf/keras/activations

https://www.tensorflow.org/api_docs/python/tf/keras/activations
https://www.tensorflow.org/api_docs/python/tf/keras/activations

=L

Build a Network

* By linking simple neurons together, a
complex network is created.

* Weights determine the "total function®”.

==
on
o
o
=
W any
0
E_
o
_D
=
©
=
O
—
=
o
Fael
©
ks
U

* Calculation can be done in parallel

e
pa
=
O
—

Chair fo

tion Technology

Function of the Neuron

| (4
—-\ net = E T lls
2 W, / /Z{\ net Z — O

R b = wp with

Combination

Lo = 1

The bias is usually represented by the weight
with the index 0 and the input vector is
extended by one digit.

Parallel calculation on GPU

e Nvidia Tesla A100 Ampere
-40GB RAM
— Tensor-Cores

==
on
R
e
o
o =
o
L
}.—
e
o
-
M
&
<)
—
c
o
Y
©
N =
()

Feedforward Network

==
on
‘e
)
®)
-
o =
(W]
-
-
@)
-
m
e
—
'6
—
c
)
—
g+]
i -
o

input hidden layer output layer

B Weights are initialized with small random values at
8 the beginning.
>

input hidden layer output layer

Network Training

e S0 how do we learn the weights?
— Backpropagation of Error

/

input hidden layer output layer

>

=L

Network Training
Update of the Weights

Different optimization methods are available
see tf.keras.optimizers

e Gradient method

e Update with learning rate * Gradients
e Variable inertia term (Momentum)

e Procedure with variable learning rate

==
on
o
o
=
W any
0
E_
o
_D
=
©
=
O
—
=
o
Fael
©
ks
U

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/

Example: Gradient method

Function Curve Error Surface
............... =1E|U e
Weight = o/ : JC : . T

Bias = 1.03 : FL : :

Ly bk UG o o PPN, SO P P A L R e S O R oy S |

..

Error

=

Network Training
Settings

e Settings
- |learning rate
— Regularization parameters

— Algorithm for the optimization of
weights

==
on
o
o
=
W any
0
E_
o
_D
=
©
=
O
—
=
o
Fael
©
ks
U

e | ots of data and big networks:

—Training time can take several
days/weeks!

\@ Network Training
Learning Rate

chnology

MSE
n< Topt ’ N="Topt Nopt <n< 27 opt

—
o
—
ot
m
=
s
O
-
—
L
(m]
Y
—

Cha

N> 2Nopt

- SGD

= Momentum
== NAG

- Adagrad
Adadelta
Rmsprop

1.0

N

training error

S

i

S
o) =
= g
C R i
‘T £ -
- B | @
= & |5
X o | &
= S e e o
@ S
2 £
=
)
2

rF=———————

underfitting

AS0)0uyoa] uoljew.loju] Joj Jteymd)

Large Models

e Choromanska et al & LeCun 2014,
e 'The Loss Surface of Multilayer Nets’

e The low-index critical points of large models
concentrate in a band.

60

==
on
=]
o
=
W any
U
@
=
o
=
m
=
O
¥ .
o
Y
©
=
E.J

nhidden
25
50
100
250
500

40 -

count

0.08 0.00 0.10
loss

Trained NN

e Neural network after training
* What has it learned?

* Which structures are important for the
NN?

>
on
S
(=
=
W any
a
=
o
o
e
m
&
o
b
=
O
Y
©
e,
5,

Is an analysis & interpretation possible?

Study of learned NN

e Which input is important for an object class?
— Noise at input
— Output desired object class

optimize
with prior

B N

Study of learned NN

e Which input data are important for e.q.
hartebeest, clownfish,...

Anemone Fish Banana Parachute Screw

0

African grey

n
electric guitar

B o i P e o oy P i, P o B i.l

o s s s o o o

B e e g P i M O g g N l_

baseball
peacock

e

g g g g g . S g g g g

LB BB BB BN

is very certain > 99

Fooling NN (1)

_ vsoooggooen £

Z oo T

@

Shooo 10001 |[5

100000000001 5

EERTTITNRE

Y4

r .m m

O 2 e

2 : £

o @

o £ E
0,
e
®

AS0jouyda| uoljew.loju] Joj Jiey)

Fooling NN
Access Control

e Face recognition with NN
— Glasses —— other person!

on
-
o
W)
L
T
o
r—
o
18]
=
e
o
T
—
[
Q
Y
m

L
W

Types of
Neural Networks - RNN

e Recurrent neural network (RNN)
* direct feedback (blue)
* indirect feedback (green)
* lateral feedback (red)

Types of
Neural Networks - RNN

e Recurrent neural network (RNN)
— Time series processing
— Long short-term memory (LSTM)

-4
e .

==
on
o
o
=
W any
0
E_
o
o
=
©
=
O
—
e
o
Fael
©
ks
U

e Applications
— Speech recognition (Siri, Alexa)
— Action recognition in videos

e Tensorflow Keras RNN
- https://www.tensorflow.org/guide/keras/rnn

https://www.tensorflow.org/guide/keras/rnn

E@ Speech Recognition using
Deep Learning

100% 4

Using DL

Chair for Information Technology

10%

4%

Word error rate on Switchboard

2%

1%

v

1990 2000 2010

Image Classification

e Given an image => assign a label

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

- cat

N

Object Detection

e Multiple objects: The task is to classify
and localize all the objects in the image.

o
@ Detection & Segmentation

The goal of semantic image segmentation is to
label each pixel of an image with a
corresponding class of what is being
represented.

Chair for Information Technology

Object Detection Semantic Segmentation Instance Segmentation

1M hidden units

Information Technology

- Spatial correlation is local
- Better to put resources elsewhere!

'LOCALLY CONNECTED NEURAL NET

STATIONARITY? Statistics is
similar at dif ferent locations

Chair for

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

FULLY CONNECTED NEURAL NET

Example: 1000x1000 image

Networks for Images

LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters

Ranzol

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters

N

Learned Filters

Chair for

=
on
)
e
o
ke
—
o
r—
o
s
=
=
C
M
—

Layers represents different features!

Pixel => edge => texton => part => object

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier

Types of N
Neural Networks - CNN

e Convolutional Neural Network
— Local connectivity
— Special arrangement

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

N

CNN Example

e Convolution Demo
* https://cs231n.github.io/convolutional-networks/

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://cs231n.github.io/convolutional-networks/

N

Pooling Layer

The function of pooling is to reduce the size
of the feature map

=> fewer parameters in the network.

Rectified feature map

1 4 Pooled feature map
2 6 max pooling with 2x2 filters 6
and stride 2 l
0 f 4 7
1 3 1

Max(3,4,1,2)=4

Deeplearning Network N
GoogleNet

e Object recognition with 22 layers
e 1000 classes, error rate 6.7%

g &
g
1 B g0 8
1 4 & Egﬂmﬁﬂaaﬂggﬂlggﬂggﬂﬂ'
aefeafed i faddgunt gy gy 1 O
Eﬂ mﬂ HE E:Ii-_ Eﬂil-a

Convolution
Pooling

Other

Deeplearning Network
VGGNet

e Object recognition with 16 layers

e 138 million weights
e 4 GPUs ~ 3 weeks learning time

U-Net: CNN for Biomedical %
Image Segmentation

U-Net for fast and precise segmentation of images!

1 64 64

128 64 64 2

input
image
tile

output
segmentation
map

¥
\4
\

388 x388 ¥

390 x 390 *

— 2222392
388 388

572 x 572
570 x 570
568 x 568

' 128 128
256 128

g

512 256
g b - 3 I"I"I =» conv 3x3, RelLU

2842

' 256 256

S 3 m ._
» copy and cro
312 1024 512 Py P
wI*I*I o ioilio # max pool 2x2
1024 $ 5 O 4 up-conv 2x2
N-lb_lb_

=» conv 1x1

f"} (\I

-
N
@ Neural Network Toolboxes

e TensorFlow
- Open Source “F’
- from Google " TensorFlc
— Google speech recognition
— Google Photos
- Phyton, C++, Java Interface
— GPU and CPU support

	Slide 1
	Conventional Machine Learning
	Slide 3
	History
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Built-in activation functions in Tensorflow (TF)
	Build a Network
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

