

Data Science Summer School Leoben 2022

Peter Auer, Martin Antenreiter, Paul O'Leary, Elmar Rückert, Lorenz Romaner

Intro ML

- \bullet Data driven approaches (aka ML)
- \bullet Types of ML
- \bullet Correlation vs. Causality
- Business cases in ML
- \bullet Evaluating results of ML
- Model selection
- \bullet Regression methods

What is Machine Learning?

- \bullet Goal: Calculating a **prediction** – Paris Paris II.
Politika **useful**, actionable
- **Data** driven
	- – use (historic) data to **calculate** the prediction

- Data type
	- –Discrete: classification
	- –Continuous: regression
- \bullet Interpretation:
	- –Label, action
	- –Outcome, model parameter
	- –Model, significant correlations

Peter Auer

Correlation vs. causality

- We can observe only correlations!
- \bullet Causality is *plausible* if hidden causes (*confounding factors*) have been accounted for *as much as possible*.

Pragmatic approach to correlations

- \bullet Correlations are useful, if they allow good predictions.
- **Warning:**

If the actual cause changes, then predictions based on previous correlations may become useless.

- \bullet Definition of the utility depends on the goal for making predictions.
- \bullet Boils down to an objective function.
- \bullet Example 1: Predictive maintenance
- \bullet Example 2: Electric Arc Furnace
- \bullet More difficult to find an objective function for unsupervised learning.

Simple objective: Minimize loss functions

- Notation:
	- –Input
	- –Prediction $\hat{y} = h(x)$ by hypothesis
	- –Correct prediction
	- –Loss $L(x, y, \hat{y})$.

Simple loss functions

• Classification error:

$$
L(x, y, \hat{y}) = \begin{cases} 1 \text{ if } \hat{y} \neq y \\ 0 \text{ if } \hat{y} = y \end{cases}
$$

 Quadratic error (for regression): \bullet $L(x, y, \hat{y}) = (\hat{y} - y)^2$

Example 1: Utility of predictive maintenance

- Gain from saved maintenance
- \bullet Cost of unnecessary maintenance
- \bullet Cost of failure caused by missed maintenance
- \bullet (Cost for collecting data and learning how to predict)

Example 2: Power consumption of an electric arc furnace

- Site with furnace and other machines
- \bullet Logs of power consumption and activities
- Goal:
	- –Predict power consumption
	- – Predict peeks in the power consumption

Which training data can we use?

- \bullet Supervised Learning with historic data:
	- –Data were collected in the past.
	- –Consist of pairs (x_i, y_i) where $y_i \approx f(x_i)$ is approximately the correct prediction for \boldsymbol{x}_i .
- \bullet Example linear regression:

$$
y_i = \boldsymbol{\theta} \cdot \boldsymbol{x}_i + \varepsilon_i, \quad i = 1, \dots, m.
$$

Linear Regression

Peter Auer

- \bullet How well do these data represent the current situation?
	- – Are the correlations in the historic data still predictive?
- \bullet Can be decided only case by case.
- Statistical methods can be used to check.

Other types of training data

- \bullet Unsupervised learning: Only inputs \bm{x}_i , $i=1,...,m$.
	- –**Clustering**
	- –Finding associations
- \bullet Reinforcement learning: $(s_1, a_1, r_1), (s_2, a_2, r_2)$ Reward r_t for action a_t in state s_t

Other types of data acquisition

- \bullet Online learning:
	- –Data (x_t, y_t) arrive sequentially,
	- t_t needs to be predicted before it is observed.
- \bullet Active learning:
	- –When obtaining y_i for some x_i is expensive, the learning algorithm might select inputs x_i for which y_i is obtained.

- \bullet Approach: Calculate prediction function (hypothesis) that minimizes (surrogate) loss function on training data.
- Example linear regression: Choose $\boldsymbol{\theta}$ such that

$$
\sum_{i=1}^n (y_i - \boldsymbol{\theta} \cdot \boldsymbol{x}_i)^2 \rightarrow Min
$$

• Prediction:

Other classes of prediction functions $h(x|\theta)$

- Decision trees
- Neural networks
- \bullet Nearest neighbor classifiers
- \bullet Support Vector Machines
- \bullet ...

• No free lunch!

Decision tree

Chair for Information Technology

Peter Auer

DSHL Summer School 2022 21

Contract of the Sea

Chair for Information Technology

Nearest neighbor classifier

Peter Auer

Support Vector Machine

Peter Auer

Chair for Information Technology

The learning algorithm

- \bullet The hypotheses class (class of prediction functions) $h(x|\theta)$ is usually chosen apriori.
- The learning algorithm optimizes the parameters θ to minimize a loss function on the training data:

 $_i$, y_i , ι (x_i $\begin{array}{c} n \ i = 1 \end{array}$

- Some loss functions are hard to optimize, e.g. the classification error, $y_i~\neq h(x_i)$
- Use a surrogate loss function that is easier to optimize.

Chair for Information Technology

Evaluating the learned hypothesis

• Uses optimal parameter $\boldsymbol{\theta}$ with

$$
\sum_{i=1}^n L(\boldsymbol{x}_i, y_i, h(\boldsymbol{x}_i | \boldsymbol{\theta})) \rightarrow Min
$$

 \bullet Does this hypothesis predict well for new data,

 $L(x, y, h(x|\theta)) = ?$

• **Need to evaluate the hypothesis with test data.**

Underfitting - Overfitting

Underfitting - Overfitting

- \bullet Unterfitting: The class of prediction functions is not rich enough to allow for good predictions.
- \bullet Overfitting symptom: The loss on new data is "much larger" than on the training data.

Chair for Information Technology

 \bullet Parameters θ are fitted too tightly to the training data $\mathbf 1$ i , y_i , ι (λ i $\begin{array}{c} n \ i\!=\!1 \end{array}$

 \pmb{n} encoding also errors in the training data.

- This may cause large prediction loss on new data.
- Counter measure: Restrict the optimization of the prediction function.

- \bullet Explicitly or implicitly choose the class of prediction functions.
- Concrete methods are often tied to the type of prediction function.
- \bullet Usually require the selection of hyperparameters.
- \bullet Mostly done by using a validation set or cross validation.

- \bullet *Pruning* for decision trees
- *Choice of architecture* and *Early Stopping* for neural networks
- Regularization: $_i$, y_i , Il χ_i $\begin{array}{c} n \ i = 1 \end{array}$
- $R(\theta)$ is a regularization function that prefers simple/small parameters.

ML-Process: (Supervised Learning from historic data)

- 1. Problem description
	- –What needs to be predicted, using which information?
	- What is the loss function?
- 2. Are there good training data?
- 3. Split into training, evaluation and test data.
- 4. Which hypotheses class?
	- –Which preprocessing of the data?
	- –Which learning algorithm?
	- –Which hyperparameters?
- 5. Learn a hypothesis
- 6. Evaluate the hypothesis
- **Iterate**
- 6. Test of the final hypothesis

A-priori knowledge and physical models

- The less an algorithm needs to learn, the easier learning is:
	- –Use a-priori knowledge and existing models.
- \bullet Often this can be done by preprocessing the data, such that only the missing parts need to be learned.
- Or restrictions can be put on the prediction function.

Assumptions:

- ▶ We have trained a prediction function $h : \mathbb{R}^d \to \mathbb{R}$.
- ▶ We have *n* test examples (x_i, y_i) , $i = 1, ..., n$, drawn independently from some distribution $P(x, y)$.

Goal:

- Estimate the error $L(x, y, h(x))$ for a new examples (x, y) drawn from $P(x, y)$.
- ► Either $\mathbb{E}_{(\mathbf{x},y)\sim P(\mathbf{x},y)}L(\mathbf{x},y,h(\mathbf{x}))$ or $P\{(\mathbf{x},y):L(\mathbf{x},y,h(\mathbf{x}))>\ell\}.$

$$
p_{\ell} := P\{(\mathbf{x}, y) : L(\mathbf{x}, y, h(\mathbf{x})) > \ell\}
$$

$$
S_n = \sum_{i=1}^n \mathbb{I}\{L(\mathbf{x}_i, y_i, h(\mathbf{x}_i)) > \ell\},
$$

$$
p_{\ell} \approx \hat{p}_{\ell} := \frac{1}{n} S_n.
$$

We seek an upper confidence bound $\bar p_\ell$ on p_ℓ , depending on n , with $P\{p_\ell > \bar{p}_\ell\} < \delta$, confidence parameter δ , e.g. $\delta = 0.01$,

$$
\bar{\rho}_\ell := \hat{\rho}_\ell + \Delta\,\,.
$$

The number of test examples S_n follows a binomial distribution with parameters n and p_ℓ ,

$$
P\left\{S_N = k\right\} = \binom{n}{k} p_{\ell}^k (1 - p_{\ell})^{n-k},
$$

\n
$$
\mathbb{E}S_n = np_{\ell},
$$

\n
$$
\mathbb{V}S_n = np_{\ell}(1 - p_{\ell}).
$$

Confidence bound for S_n - Figure

$$
P\{p_{\ell} > \bar{p}_{\ell}\} = P\{p_{\ell} > \hat{p}_{\ell} + \Delta\} = P\{np_{\ell} > n\hat{p}_{\ell} + n\Delta\}
$$

=
$$
P\{\mathbb{E}S_n > S_n + n\Delta\} = P\{S_n - \mathbb{E}S_n < -n\Delta\}
$$

=
$$
P\left\{\frac{S_n - \mathbb{E}S_n}{\sqrt{np_{\ell}(1 - p_{\ell})}} < -\Delta\sqrt{\frac{n}{p_{\ell}(1 - p_{\ell})}}\right\}
$$

$$
\approx P\left\{\mathcal{N}_{0,1} < -\Delta\sqrt{\frac{n}{p_{\ell}(1 - p_{\ell})}}\right\}
$$

$$
< \delta
$$

if for the $(1 - \delta)$ -quantile C_{δ} of the standard normal distribution,

$$
C_\delta = \Delta \sqrt{\frac{n}{p_\ell (1-p_\ell)}}.
$$

Confidence bound for p_{ℓ} (2)

$$
\mathcal{C}_\delta = \Delta \sqrt{\frac{n}{p_\ell (1-p_\ell)}}
$$
\n
$$
\Delta = \mathcal{C}_\delta \sqrt{\frac{p_\ell (1-p_\ell)}{n}}
$$

But ρ_ℓ is unknown, just $\rho_\ell \leq \hat\rho_\ell + \Delta$. Plugging in and solving for Δ gives

$$
\Delta \approx C_{\delta} \sqrt{\frac{\hat{p}_{\ell}(1-\hat{p}_{\ell})}{n}} + \frac{C_{\delta}^2}{n}.
$$

Impossible without further assumptions:

- Let $y = 0$ for all x but $P(0, B) = 1/B$ and $h(x) = 0$ for all x.
- If $n \ll B$, then it is unlikely that $(0, B)$ is among the test data.
- \triangleright For the square loss the observed error is 0, but $\mathbb{E}_{(\mathbf{x},y) \sim P(\mathbf{x},y)} L(\mathbf{x},y,h(\mathbf{x})) = P(0,B) * (B-0)^2 = B.$

For **bounded loss**, e.g. $L(x, y, h(x)) \in [0, 1]$, we get

$$
\mathbb{E}_{(\mathbf{x},y)\sim P(\mathbf{x},y)}L(\mathbf{x},y,h(\mathbf{x})) \leq \frac{1}{n}\sum_{i=1}^n L(\mathbf{x}_i,y_i,h(\mathbf{x}_i)) + \frac{C_{\delta}}{2\sqrt{n}}
$$

with probability δ .