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Intro ML

• Data driven approaches (aka ML)
• Types of ML
• Correlation vs. Causality
• Business cases in ML
• Evaluating results of ML
• Model selection

• Regression methods
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What is Machine Learning?

• Goal: Calculating a prediction
–useful, actionable

• Data driven
–use (historic) data to calculate the 

prediction
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Type of predictions

• Data type
–Discrete: classification
–Continuous: regression

• Interpretation:
–Label, action
–Outcome, model parameter
–Model, significant correlations
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Correlation vs. causality

• We can observe only correlations!

• Causality is plausible if hidden causes 
(confounding factors) have been 
accounted for as much as possible.
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Korrelation vs. Kausalität
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Confounding factor
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Turbulence

Bumpy rideSeatbelt sign
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Pragmatic approach to 
correlations

• Correlations are useful, if they allow 
good predictions.

• Warning:
If the actual cause changes, then 
predictions based on previous 
correlations may become useless.
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Utility of predictions

• Definition of the utility depends on 
the goal for making predictions.

• Boils down to an objective function.

• Example 1: Predictive maintenance
• Example 2: Electric Arc Furnace

• More difficult to find an objective 
function for unsupervised learning.
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Simple objective:
Minimize loss functions

• Notation:  
– Input 
–Prediction by hypothesis 
–Correct prediction 
– Loss . 
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Simple loss functions

• Classification error:

• Quadratic error (for regression):
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Example 1: Utility of 
predictive maintenance

• Gain from saved maintenance 
• Cost of unnecessary maintenance
• Cost of failure caused by missed 

maintenance
• (Cost for collecting data and learning 

how to predict) 
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Example 2: Power consumption of 
an electric arc furnace

• Site with furnace and other 
machines

• Logs of power consumption and 
activities

• Goal:
–Predict power consumption
–Predict peeks in the power 

consumption
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Which training data 
can we use?

• Supervised Learning with  historic 
data: 
–Data were collected in the past.
–Consist of pairs  

where   is approximately the 
correct prediction for .

• Example linear regression:  
   , .
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Linear Regression
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Problem with historic data

• How well do these data represent 
the current situation?
–Are the correlations in the historic data 

still predictive?

• Can be decided only case by case.
• Statistical methods can be used to 

check.
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Other types of 
training data

• Unsupervised learning: 
Only inputs , .
–Clustering
–Finding associations 

• Reinforcement learning: 
( ଵ ଵ ଵ ( ଶ ଶ ଶ

Reward ௧ for action ௧ in state ௧
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Other types of 
data acquisition

• Online learning:
–Data ௧ ௧ arrive sequentially,

௧ needs to be predicted before it is 
observed.

• Active learning:
–When obtaining  for some  is 

expensive, the learning algorithm 
might select inputs  for which  is 
obtained.
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Which learning algorithm?

• Approach: Calculate prediction function 
(hypothesis) that minimizes (surrogate) 
loss function on training data.

• Example linear regression:
Choose such that 

 
ଶ

ୀଵ

• Prediction: 
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Other classes of 
prediction functions 

• Decision trees
• Neural networks
• Nearest neighbor classifiers 
• Support Vector Machines
• ...

• No free lunch!
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Decision tree 
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Neural network 
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Nearest neighbor classifier 
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Support Vector Machine 
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The learning algorithm

• The hypotheses class (class of prediction 
functions) is usually chosen a-
priori. 

• The learning algorithm optimizes the 
parameters to minimize a loss function 
on the training data: 

  

ୀଵ
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Surrogate loss functions

• Some loss functions 
are hard to optimize, 
e.g. the classification 
error,  

• Use a surrogate loss 
function that is easier 
to optimize. 
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Evaluating the learned 
hypothesis

• Uses optimal parameter with

  𝒊

ୀଵ

• Does this hypothesis predict well for new 
data,  

)) = ?

• Need to evaluate the hypothesis with 
test data.
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Underfitting - Overfitting
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Underfitting - Overfitting

• Unterfitting: The class of prediction 
functions is not rich enough to allow for 
good predictions.  

• Overfitting symptom: 
The loss on new data is “much larger” 
than on the training data.
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Reason for Overfitting

• Parameters are fitted too tightly to the 
training data

ଵ
   


ୀଵ

encoding also errors in the training data.

• This may cause large prediction loss on 
new data.

• Counter measure: Restrict the 
optimization of the prediction function.
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Model selection

• Explicitly or implicitly choose the 
class of prediction functions.

• Concrete methods are often tied to 
the type of prediction function.

• Usually require the selection of 
hyperparameters.

• Mostly done by using a validation 
set or cross validation.
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Methods for model selction

• Pruning for decision trees

• Choice of architecture and Early Stopping 
for neural networks

• Regularization: 
  


ୀଵ

is a regularization function that 
prefers simple/small parameters.
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ML-Process: (Supervised Learning 
from historic data)

1. Problem description
– What needs to be predicted, using which information?
– What is the loss function?

2. Are there good training data?
3. Split into training, evaluation and test data.
4. Which hypotheses class?

– Which preprocessing of the data?
– Which learning algorithm?
– Which hyperparameters?

5. Learn a hypothesis
6. Evaluate the hypothesis

Iterate
6. Test of the final hypothesis
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A-priori knowledge and 
physical models

• The less an algorithm needs to learn, the 
easier learning is:
– Use a-priori knowledge and existing models.

• Often this can be done by preprocessing 
the data, such that only the missing 
parts need to be learned.

• Or restrictions can be put on the 
prediction function. 
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Final test of hypotheses

Assumptions:

▶ We have trained a prediction function h : Rd → R.
▶ We have n test examples (x i , yi ), i = 1, . . . , n, drawn independently

from some distribution P(x , y).

Goal:

▶ Estimate the error L(x , y , h(x)) for a new examples (x , y) drawn from
P(x , y).

▶ Either E(x ,y)∼P(x ,y)L(x , y , h(x)) or P{(x , y) : L(x , y , h(x)) > ℓ}.
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Probability of large error pℓ

pℓ := P{(x , y) : L(x , y , h(x)) > ℓ}

Sn =
n∑

i=1

I{L(x i , yi , h(x i )) > ℓ},

pℓ ≈ p̂ℓ :=
1

n
Sn.

We seek an upper confidence bound p̄ℓ on pℓ, depending on n, with
P{pℓ > p̄ℓ} < δ, confidence parameter δ, e.g. δ = 0.01,

p̄ℓ := p̂ℓ +∆ .
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Confidence bound for Sn

The number of test examples Sn follows a binomial distribution with
parameters n and pℓ,

P {SN = k} =

(
n

k

)
pkℓ (1− pℓ)

n−k ,

ESn = npℓ,

VSn = npℓ(1− pℓ).
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Confidence bound for Sn - Figure
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Confidence bound for pℓ (1)

P{pℓ > p̄ℓ} = P{pℓ > p̂ℓ +∆} = P{npℓ > np̂ℓ + n∆}
= P{ESn > Sn + n∆} = P{Sn − ESn < −n∆}

= P

{
Sn − ESn√
npℓ(1− pℓ)

< −∆

√
n

pℓ(1− pℓ)

}

≈ P

{
N0,1 < −∆

√
n

pℓ(1− pℓ)

}
< δ

if for the (1− δ)-quantile Cδ of the standard normal distribution,

Cδ = ∆

√
n

pℓ(1− pℓ)
.
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Confidence bound for pℓ (2)

Cδ = ∆

√
n

pℓ(1− pℓ)

∆ = Cδ

√
pℓ(1− pℓ)

n

But pℓ is unknown, just pℓ ≤ p̂ℓ +∆. Plugging in and solving for ∆ gives

∆ ≈ Cδ

√
p̂ℓ(1− p̂ℓ)

n
+

C 2
δ

n
.
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Upper bound on the mean error E(x ,y)∼P(x ,y)L(x , y , h(x))

Impossible without further assumptions:

▶ Let y = 0 for all x but P(0,B) = 1/B and h(x) = 0 for all x .

▶ If n ≪ B, then it is unlikely that (0,B) is among the test data.

▶ For the square loss the observed error is 0, but
E(x ,y)∼P(x ,y)L(x , y , h(x)) = P(0,B) ∗ (B − 0)2 = B.

For bounded loss, e.g. L(x , y , h(x)) ∈ [0, 1], we get

E(x ,y)∼P(x ,y)L(x , y , h(x)) ≤
1

n

n∑
i=1

L(x i , yi , h(x i )) +
Cδ

2
√
n

with probability δ.
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