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Digitalization and CPS at the Chair of Automation

Three selected examples

Recent and current projects

Bucket wheel reclaimer: 
life time optimization

Bucket wheel excavator, incident 
analysis.

Tunnelling: real-time 
comparison of observation 
and simulation.
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50 Years of Computing Technology

Apollo Guidance Computer 

2,800 ICs

36 K-words memory (16 Bit)

11.72 micro-seconds, (approx. 100 KHz).

Nexus

CPU: Octa-core, 1.5GHz

GPU: Adreno 430

128 GB Memory

Comparison: 1.000.000 times more computing power

2.000.000 times more memory, etc. etc.

It’s not a question of technology
It’s what we do with the technology

16. July 1969
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Large Hadron Collider

Atlas Alice
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Cyber Physical Systems 

The most succinct and pertinent definition of a cyber physical system is:

“A CPS is a system with a coupling of the cyber aspects of computing and 
communications with the physical aspects of dynamics and engineering that 

must abide by the laws of physics. This includes sensor networks, real-time and 
hybrid systems.” 

Consequently:

▪ Mere correlation in the sensor data is an inadequate measure of significance.

▪ System models and their inverse solutions are required if sensor data analytics 
is to infer knowledge with respect to causality.

System Identification, Embedded Simulation, Inverse problem to identify cause.

▪ No causality → No semantics. No semantics → No knowledge.
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Digital Twin
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▪ Incident analysis
Given an incident with the plant or machinery we can investigate the cause. This is important for both liability and guarantee 
reasons. Financially this has proved to be one of the most important issues.

▪ Commissioning support: 
shortening the time to start up complex plant and machinery

▪ Automatic operations recognition:
Identifying incorrect operation, comparison of operation performance between operators

▪ Operational efficiency optimization:
Finding invisible lost time

▪ Logistics optimization
The logistics have an effect on machine life-times

▪ Fleet management
Comparing the performance of multiple pieces of equipment

▪ Plant condition monitoring
System identification to determine changes in system behaviour

▪ Material condition monitoring
With established models effects of material condition can be separated from machine condition

▪ Engineering feedback 
Possible improvements in machine design can be identified, important for the next generation.

7

Economic Justification
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Intelligence and Artificial Intelligence

Proposal for the “Mine Brain” project



Paul.oleary@unileoben.ac.at
© 2019 Chair of Automation, University of Leoben
automation.unileoben.ac.at

Perception and Understanding

9
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What exists and what do we know?

Ontology
What exists and which 
relationships are there?

Epistemology
What do we know? how do 
we know it? And what are the 
limitations of knowing?
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„What is a valid source of knowledge?“

Some ensuing questions:

▪ What is belief?

▪ What is justified belief and what justifies justified?

▪ What is the difference between justified belief, knowledge and 
understanding? 

▪ How do we know that we know? 

11

A fundamental question
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„What is a valid source of knowledge?“

European Phenomonology as a possible answer:

▪ Edmund Husserl (April 8, 1859 – April 27, 1938) 
“… experience is the source of all knowledge…”

▪ Martin Heidegger (September 26, 1889 – May 26, 1976) 
“… the things in lived experience always have more to them than what we can 
see…”. 

(Hidden models)

▪ Maurice Merleau-Ponty (14 March 1908 – 3 May 1961) 
“…first we experience and then we reflect....” 

12

European Phenomonology
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Conception and Perception

Sensory Base

Vijñānas 1..5

Modelling 

sensory 

experience

Mano-Vijñāna

Self referencing 

of consequence

Manas-Vijñāna

Models for past 

experience

Ālāya Vijñāna

Mental modelsSensory information

Form

Feeling

Perception

Impulse

Consciousness

Semi-automatic 

response

Conditionned 

response
Premeditated 

response

Perception

Conception
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Galileo Galilei (15. Feb. 1564  - 29. Dec. 1641)

Draft of a letter to Leonardo Donato, Doge of 
Venice, August, 1609, and Notes on the Moons 
of Jupiter, January 1610. Credit: University of Michigan 

Special Collections Library

Born in 1564, Galileo Galilei's 
observations of our solar system and 
the Milky Way revolutionized the 
understanding  the Universe.

Observational science
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Isaac Newton (20. Mar. 1726 - 31. Mar. 1727)

Mathematical models of observation (Physical laws)
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Carl Friedrich Gauss (30 April 1777 – 23 February 1855)

Gauss developed the statistical methods of least squares to 
determine the orbit of Ceres, which was first observed by Galilei.

Mathematical science of systems and uncertainty
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Albert Einstein (14. Mar. 1879 - 18. Apr. 1955)

Connectional paradigm change emerging from abstract thinking 

A relationship between 
gravity and time-space.  
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Cape Lambert: an Exemplary Case

One year of operating data for the hydraulics of the two ship loaders 
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Data for 2013-12-11

From a Years Overview to Slew-Bearing Loading on  a Specific Day

Data for 2013-01-12

Full Year Summary
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▪ For the data on the server.

▪ PCA and LPP were performed to the array of summary tables.

▪ PCA can be used to represent days of lower activity.

▪ LPP can be used to represent significant changes in the data.

24/10/2019 20

D4.2.3: Example – PCA and LPP
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D4.3.1: Visualization of CCA results
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Location Mapped Data

22
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Anomaly Heat Maps

23
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The Universe

▪ 5% “normal matter”, i.e., the rest - everything on 
Earth, everything ever observed, everything we claim 
to know anything about!

▪ 27%. dark matter.

▪ 68% dark energy. 

24

Justified belief or knowledge?

Abell 520: observation seems to 
indicate the current theories of dark 
matter are not correct.
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Hybrid Machine Learning for Anomaly 
Detection in Industrial Time-Series 

Measurement Data
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▪ Improving the detection of anomalies in multivariate 
time-series (MVTS)

▪ Evaluating real-time machine data in safety relevant 
applications

▪ Developing a generic framework which combines the 
strengths of KPI-classification and machine learning
▪ Machine learning as augmentation

07/07/2022
2

Motivation
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▪ Vibro replacement ground improvement process
▪ Monitored with sensors with ns= 16 channels

▪ Non-uniform sub-surface conditions from site to site

▪ Varying creation time for a single column tc= 6 … 30 min

▪ Varying number of MVTS per site m = 400 … 1000 MVTS

▪ Manually performed process

▪ For each foundation column a MVTS is created

07/07/2022
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Case Study
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Geo-referenced KPI for multiple sites
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Overview of the Hybrid Classifier

Physical Process LSTM-VAE

KPI based classification

ML based classification

Hybrid Classification
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▪ 49 KPI

▪ Outlier detection is performed 
for each sensor channel and 
each KPI based on IQR

▪ Outliers - values which are 
outside the lower bound 𝑏𝑙
and the upper bound 𝑏𝑢
▪ 𝑏𝑢 = 𝑞75 + 1.5 𝐼𝑄𝑅

▪ 𝑏𝑙 = 𝑞75 − 1.5 𝐼𝑄𝑅

▪ “Outlierness”: 
▪ Artificial word

▪ Quantification of the degree that 
a MVTS is an outlier

07/07/2022
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KPI-based classifier
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Data pipe line

Data 
acquisition

Data 
ingestion

KIP 
Calculation

MVTS, KPI, “outlierness” and 
queryable metadata.

MVTSRaw Real-time machine data 
Classical processing 

MVTS

Channel 
Selection

Rule based
segmentation

Validation

Pre-processing
ML-MVTS

ML-MVTS

ML Training

Deselect 
outliers

Random 
MVTS 

sample

Train bi-LSTM 
Autoencoder

GA Hyperparameter 
optimization

Data 
trimming

Hyperparameters, 
weights,
biases
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▪ Different goals may require different selection of channels, e.g., 
column quality and production efficiency.

▪ Metadata-based channel selection.

07/07/2022
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Step 1: Channel Selection for ML

Complete data record Channels relevant for quality

Note: More data channels, does not imply a better model. 

Originally we tested using all the data but the results were not as good as with 
selected channels.
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▪ Expert rules used to segment the data according to 
subprocesses.

07/07/2022
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Step 2: Rule based segmentation

Rule based segmentation
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Step 3: Common data structures used for MVTS

Map segments to 
standard objects
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Step 4: Remove no activity (no change of state)

Result: An MVTS binary object for each column and a corresponding “outlierness” 
value via the KPI.
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Basic Autoencoder
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▪ Hybrid classifier consists of two parts:

1) KPI classifier 
▪ Automatic identification of systematic changes in the MVTS

2) Unsupervised machine learning classifier
▪ Detecting non-linear relationships between the sensor channels

▪ Detecting anomalies which were not addressed by the KPI directly
▪ Errors that were not considered in the KPI design

▪ Serial-Parallel hybrid model
▪ Combination of the classifications (logical OR)

07/07/2022
13

Hybrid Machine Learning

ML

KPI
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▪ LSTM-based variational autoencoder (LSTM-VAE)
▪ Performs dimensionality reduction by encoding the input 

signals into lower dimensional latent variables

▪ Variational autoencoder - generative model
▪ Latent variables: Gaussian distributions with mean and standard 

deviation

07/07/2022
14

ML-based classifier
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▪ 𝐷𝐾𝐿: Kullback-Leibler divergence
▪ Quantification for the similarity of two distributions

▪ Assumes independence of variables/ sensor channels

▪ Does not take into account the sequence of the data

▪ 𝐸𝑟 : reconstruction error:
▪ Difference between initial MVTS (input signal) 𝑌 with m signals and the 

reconstructed MVTS 𝑌 (reconstructed signal)

▪ 𝐸𝑟 = σ𝑘=1
𝑚 ||𝑌𝑘 − 𝜆 𝑌𝑘 ||𝐹

2 with 𝜆 = 1

▪ 𝐸𝑡: cost function VAE-LSTM training
▪ 𝐸𝑡 = 𝐸𝑟 − 𝐷𝐾𝐿{𝑁(0,1)||𝑁 𝜇, 𝜎 }

07/07/2022
15

Cost Function of the LSTM-VAE Classifier
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Bivariate: “outlierness” vs ML-Reconstion error
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Comparison of sub-process performance
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Importance of Hyperparameter Optimization (HPO)

Classifier trained without HPO Classifier trained with HPO

▪ Improved reconstruction error for classifier trained with 
optimized hyperparameters
▪ Higher distance between the labelled groups of outliers and normal samples
▪ Lower variance and IQR within the groups – tighter bounds for the detection of 

outliers
▪ No false classifications of the manually labelled examples after the hyperparameter 

optimization
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Skewness adjustment
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ML Classification
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Hyperparameter Optimization (HPO)

Settings of the Genetic Algorithm:

Latent dimension: 3

Population size: 20

Maximum number of generations: 7

Mutation probability: 0.05

Random probability: 0.05

Data:

Site: Fehring

Number of input channels: 6

Number of training samples: 80

Table 1: Results of HPO with 1-layer networks
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Comparing different architectures
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Comparing LSTM and bi-LSTM
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Run dependent performance vs architecture
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Comparison of Weight Initializers
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Comparison of Weight Initializers

Xavier-Initializer (default) [2]: sampling from

He-Initializer [2]: sampling from

Fig. 9: Plots of mean squared error of training (top) and validation data (bottom) of a biLSTM-
biLSTM VAE with different weight initializers
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Statistical behaviour of the different architectures

Fig. 10: Boxplot of MSE per sample and time step with training
data as input
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Architectures tested

Table 2: Results of HPO with 1-layer networks – first and obsolete run
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▪ Alternative cost function / measures in the latent space

▪ Serial-parallel-hybrid model
▪ Pre-selecting the MVTS for training the ML-classifier using 

KPI-analysis

▪ Incorporating other normalizations for the sensor 
signals

▪ Including other variables (e.g. the latent dimension) in 
the hyperparameter optimization

▪ Subsurface modelling to separate systematic from 
random variations to improve outlier detection via KPI.

07/07/2022
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Further work
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KPI Spatial Modelling
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Classified as outlier by both
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Classified as outlier by ML
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Classified as outlier by KPI
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