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Features

Some machine learning projects succeed 
and some fail.

 
What makes the difference? 

Easily the most important factor is the 
features used. 

Prof. Pedro Domingos
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Feature Engineering

• Feature engineering is a process
– that uses domain knowledge,
– in order to generate features
– with which machine learning 

algorithms work.

Feature engineering is important for the 
application of machine learning!
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Feature Engineering -
Conventional ML 

~70% of the time is invested in 
feature engineering! 

Machine learning:
Success depends on how you prepare 

the data!
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Example:
Image Processing

• Output data very different
=>content very similar
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Image Processing 

• Differences
– Shooting point
– Color temperature / illumination
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Image Processing - 
Normalization

• Color Temperature / Illumination
– Normalization
– Discard color information
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Image Processing Library

● OpenCV is a fast C/C++ library
It has a python interface!

● Drawback
● Interfaces change over time!
● The installation procedure is sometimes 

difficult.
● Therfore, define the exact library version!



9

Example:
 Histogram Equalization 

import cv2 as cv

filename = 'myimage.jpg'
src = cv.imread(filename)
if src is None:
    print(f'Could not open image: {filename}!')
    exit(0)
src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
dst = cv.equalizeHist(src)
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Example: Gaussian Filter

● Blurring image with a filter size 7x7
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Sobel Operator 
x-Direction

● Filter for edge detection 
x-Direction kernel
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Sobel Operator 
y-Direction

● Filter for edge detection 
y-Direction kernel
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Sobel Operator 
Gradient

● At each point of the image we calculate 
an approximation of the gradient

● Sometimes the following simpler 
equation is used:



18

Sobel Example

g = -150-300-150
    +150+510+255
g = 315
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Feature Engineering

Which filters (kernels) should we use 
for our problem?
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Feature Engineering
Loop

1) Brainstorming 
 Use knowledge about the domain!
 What could work?

2) Create feature
3) Adjust features (thresholds)
4) Learn hypothesis 
5) Performance measurement
 Repeat 1-5
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Feature Engineering and 
Error  Estimation

• Feature Engineering Loop => 
Overfitting is possible!

• The true error can only be estimated 
with new unseen test data!

• Tip: Test data is from a "safe" for the 
final evaluation!



23

Feature Categorization

• Numeric variables
–balance: 2.000€
–weight:  4,0t

• Category variables
–with order:

• grade: very good > good > satisfactory 

–without order
• gender: female / male
• location: Graz, Leoben, Vienna
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Discretization

• Input: numeric values
• Output: discrete values

see sklearn.preprocessing.KBinsDiscretizer

• Split strategies
–Distribution over range, each range is of 
equal length

–Distribution using number of items per 
bin 

–Distribution using label information

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
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Discrete Values Converted 
to Numeric Values

• Input type: Category
• Output: For each category a 

numerical value

 

• Problem
– Values specify an order!!

Location
Graz
Leoben
Wien

Location
1
2
3
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Discrete Values Converted 
to Numeric Values (2)

 
• Apartments are more expensive in 

Vienna than in Graz.  
• What might a learned model predict 

about housing prices in Leoben?

Location
Graz
Leoben
Wien

Location
1
2
3
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Discrete Values and 
One-Hot Encoding

• Input type: Category
• Output: Separate column for each 

category
see sklearn.preprocessing.OneHotEncoder

Location Value
Graz 1
Leoben 2
Wien 3

o1 o2 o3
1 0 0
0 1 0
0 0 1

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
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Multi-hot Encoding 
for Streets

Street
Alte Poststraße
Eggenberger Straße
Eggenberger Allee

Location s1 s2 s3
FH 1 1 0
Siemens 0 1 0
Otto 1 0 0
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Feature Scaling

• Features have different value ranges!

• Why should you scale features?
– Algorithms do not weight features equally

e.g. k-Nearest Neighbors with Euclidean 
distance

– Optimization algorithms converge faster 
(SVM, SGD,...)



https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
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Principal Component 
Analysis - PCA

• Method for dimensionality reduction
• It is an unsupervised method  
• Assumption of PCA:

–The direction with the highest variance 
contains the most information.

• Discard the components with low 
variance (=dimension reduction)

• see sklearn.decomposition.PCA

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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PCA Example

• Example
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Missing Data

• Reasons
– User did not want to enter data 

in a survey
– Sensor defects
– Measurement was forgotten
– ...
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Missing Data - Processing
• Delete data row

– but data is valuable!

• You need domain knowledge which can give an 
insight into how to preprocess data with missing 
values!

• Replace missing data entries with
– mean or median
– delete columns only
– interpolation between two measured values
– prediction of missing values: use a learned 

model for prediction of the missing values
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Incorrect Data

• Reasons:
–No/incorrect calibration of the measuring 

devices
–Excel import/export error 

e.g. csv data with , or .

• Systematic errors 
–e.g. offset at the measuring device
–Correction possible if you recognize the 

error
–Daylight saving time change! 
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Data Snooping

Data that influenced the learning 
process can no longer be used for 

performance measurement.

Most common mistake in practice!
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Data Snooping 
Financial Data

• Exchange Rate Forecast
– US Dollar vs. Pound Sterling

• Input for a forecast: 
– Exchange rate fluctuations over the last 20 

days

• Output: 
– Expected exchange rate fluctuation 

• Goal:
– Profit from exchange rate fluctuations
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Feature Learning

Learning the features from the data 
should make "feature engineering" 

obsolete!
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Feature Learning
CNN

• 2D Convolutional Neural Networks
– 1989: Handwriting recognition (digits)
– 1991: Face recognition
– 1993: Vehicle detection
– 2011: Object detection  (GPU-based)
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Feature Learning

• Feature learning works when
–a lot of data is available
–and enough computing capacity

• Examples:
–Computer Vision (CNN)
–AlphaGo Zero (CNN): Only with the rules of 

the game and trained by playing games 
against itselves!
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