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Features

Some machine learning projects succeed
and some fail.

What makes the difference?
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Easily the most important factor is the
features used.

Prof. Pedro Domingos
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Feature Engineering

e Feature engineering is a process
— that uses domain knowledge,
— in order to generate features

— with which machine learning
algorithms work.

Feature engineering is important for the
application of machine learning!




Feature Engineering -
Conventional ML

~70% of the time is invested in
feature engineering!

Machine learning:

Success depends on how you prepare
the data!




Example:
Image Processing

e Output data very different
=>content very similar
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Chair for Information Tec

e Differences
—Shooting point
— Color temperature / illumination
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Image Processing -
Normalization

-
on
i
\ UI
J
ks
c
o
—
i
(18]
=
e
o
Tt
-
T
o
N

Cha

e Color Temperature / Illumination
— Normalization
— Discard color information
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Image Processing Library

*OpenCV is a fast C/C++ library
It has a python interface!

* Drawback
* Interfaces change over time!

* The installation procedure is sometimes
difficult.

* Therfore, define the exact library version!
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Example:
Histogram Equalization

import cv2 as cv

filename = 'myimage.jpg’
src = cv.imread(filename)
if src is None:
print(f'Could not open image: {filename}!")
exit(0)
src = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
dst = cv.equalizeHist(src)




Image has more
contrast
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2D Convolution

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

"
--
-

New pixel value (destination pixel)

o L

(4 X 0)
(0 x 0)
(0 x 0)
(0 x 0)
0x1)
(0x 1)
(0 x 0)
(0x 1)

+(-4x2)

-
“‘
-

11



Gaussian Filter

* A visualization of the weights generated
by a 2D Gaussian distribution
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Gaussian Filter Size

* Filter (kernel) size 3x3, 5x5, 7x7,...
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Chair for Information Technology




Sobel Operator
X-Direction

* Filter for edge detection
X-Direction kernel

-1 0 +1
Gy=1-2 0 +2|*1I
-1 0 +1
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Sobel Operator
v-Direction

* Filter for edge detection
y-Direction kernel

-1 -2 -1
+1 +2 +1
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Sobel Operator
Gradient

* At each point of the image we calculate
an approximation of the gradient

G=,/G}+G}

* Sometimes the following simpler
equation is used:

G = |Gz| + |Gy
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Sobel Example

150 [ 150 | 150 | 255 | 255

150 SR 255 | 255 1

150 [ 255 | 255 | 1 1

255 | 255 | 1 1 1 150 | -300 | -150

P 1 | 1 1
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y-direction kernel 150 510 255
i) g = -150-300-150
3 || = = +150+510+255
AEIE g = 315
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Sobel Result
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Feature Engineering

Which filters (kernels) should we use
for our problem?
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Feature Engineering
Loop

1) Brainstorming

* Use knowledge about the domain!
* What could work?

2) Create feature

3) Adjust features (thresholds)
4) Learn hypothesis

5) Performance measurement
Repeat 1-5
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Feature Engineering and
Error Estimation

e Feature Engineering Loop =>
Overfitting is possible!

e The true error can only be estimated
with new unseen test data!

e Tip: Test data is from a "safe" for the
final evaluation!
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Feature Categorization

e Numeric variables
—balance: 2.000€
- weight: 4,0t

e Category variables

— with order:
e grade: very good > good > satisfactory

—without order
e gender: female / male
e |ocation: Graz, Leoben, Vienna
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Discretization

e Input: numeric values
e Output: discrete values
see sklearn.preprocessing.KBinsDiscretizer
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e Split strategies
—-Distribution over range, each range is of
equal length

—Distribution using number of items per
DIN
—-Distribution using label information
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html

Discrete Values Converted
to Numeric Values

e Input type: Category

e Output: For each category a
numerical value
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Location Location
Graz 1
 ———
Leoben 2
Wien 3
e Problem

—\Values specify an order!!
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Discrete Values Converted
to Numeric Values (2)

Location Location
Graz 1
 ———
Leoben 2
Wien 3

e Apartments are more expensive in
Vienna than in Graz.

e What might a learned model predict
about housing prices in Leoben?
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Discrete Values and
One-Hot Encoding

e Input type: Category

e OQutput: Separate column for each
category

see sklearn.preprocessing.OneHotEncoder

Location Value ol 02 03
Graz 1 1 0

e
Leoben 2 0 | 0

Wien 3 0 0
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
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Multi-hot Encoding
for Streets
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Feature Scaling

e Features have different value ranges!

e Why should you scale features?
— Algorithms do not weight features equally

e.g. k-Nearest Neighbors with Euclidean
distance

— Optimization algorithms converge faster
(SVM, SGD,...)
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Feature Scaling

M « Min-Max Scaling
; (see sklearn.preprocessing.MinMaxScaler)
: W min(x)

r Infc

max(r) — min(x)

Pl
o
L

e Normalization using mean and with Min-Max

p r—
T ==

max(x) — min(x)
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

r Infc

o

yrmation Technology

Feature Scaling

e Normalization using mean and standard deviation
(see sklearn.preprocessing.StandardScaler)
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https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html

Principal Component
Analysis - PCA

e Method for dimensionality reduction
e It is an unsupervised method
e Assumption of PCA:

— The direction with the highest variance
contains the most information.
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e Discard the components with low
variance (=dimension reduction)

e see sklearn.decomposition.PCA

32


https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

PCA Example
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2. Komponente

Principal Component
Analysis - Kernel PCA
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10 X P I
LT ey
T @

Nk *
Cla ¥
| T ‘.l""
-1.0 .""." d

X1
Projektion Kernel-PCA
o
0.2
0.0 -
-0.2
—0.4

-0.75 -0.50 -0.25 0.00 0.25 0.50
1. Komponente

2. Komponente

1.0

0.5 -1

0.0 -

Projektion PCA

-1.0 -0.5 0.0 0.5
1. Komponente

1.0

N

34



=
on
L=
o
=
S=
o
—
=
o
-
o
=
o
(T
(=
o
e
©
i
U

Missing Data

e Reasons

—User did not want to enter data
In a survey

— Sensor defects
— Measurement was forgotten

35
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Missing Data - Processing

e Delete data row
— but data is valuable!

e You need domain knowledge which can give an
insight into how to preprocess data with missing
values!

e Replace missing data entries with
—mean or median
—delete columns only
—interpolation between two measured values

— prediction of missing values: use a learned
model for prediction of the missing values
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Incorrect Data

e Reasons:

— No/incorrect calibration of the measuring
devices

- Excel import/export error
e.g. csv data with , or .
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e Systematic errors
- e.g. offset at the measuring device

— Correction possible if you recognize the
error

— Daylight saving time change!
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Data Snooping

Data that influenced the learning
process can no longer be used for
performance measurement.

Most common mistake in practice!
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Data Snooping
Financial Data

e Exchange Rate Forecast
- US Dollar vs. Pound Sterling

e Input for a forecast:

- Exchange rate fluctuations over the last 20
days

e Output:

— Expected exchange rate fluctuation
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e Goal:
— Profit from exchange rate fluctuations
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Data Snhooping
Financial Data - Processing

e Processing for ML

— Normalization of the data
- Splitting into training, validation, and test

ation Technology
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Data Snhooping
Pre-Processing

e Problems in the pre-processing

— Normalization (mean value calculation, scaling)
— Splitting into training, validation, and test data

8330.

- snoopin
”§20'

o

Q10¢

=]

=0

S

O

-10 :

no snooping

0 100 200 300 200 500
Day

=> The mean value calculation includes future
(test) values!
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Feature Learning

Learning the features from the data
should make "feature engineering”
obsolete!
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Feature Learning
CNN

e 2D Convolutional Neural Networks
- 1989: Handwriting recognition (digits)
- 1991: Face recognition
- 1993: Vehicle detection
— 2011: Object detection (GPU-based)

C3:f. maps 16@10x10
C1. feature maps S4: f. maps 16@5x5
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32x32 S2: f. maps

C5: layer .

120

NN

——

\— 8
B =
\ — |
‘ | Full conljlectlon ‘ Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection
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Feature Learning

e Feature learning works when
—a lot of data is available
—and enough computing capacity
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e Examples:
— Computer Vision (CNN)

- AlphaGo Zero (CNN): Only with the rules of
the game and trained by playing games
against itselves!

44



‘‘‘‘‘‘
.......
‘‘‘‘‘‘‘

Alpha Go Zero

Input: Image of the board
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